Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 621(7978): 295-299, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37380028

RESUMO

Spectroscopy is a key analytical tool that provides valuable insight into molecular structure and is widely used to identify chemical samples. Tagging spectroscopy is a form of action spectroscopy in which the absorption of a single photon by a molecular ion is detected via the loss of a weakly attached, inert 'tag' particle (for example, He, Ne, N2)1-3. The absorption spectrum is derived from the tag loss rate as a function of incident radiation frequency. So far, all spectroscopy of gas phase polyatomic molecules has been restricted to large molecular ensembles, thus complicating spectral interpretation by the presence of multiple chemical and isomeric species. Here we present a novel tagging spectroscopic scheme to analyse the purest possible sample: a single gas phase molecule. We demonstrate this technique with the measurement of the infrared spectrum of a single gas phase tropylium (C7H7+) molecular ion. The high sensitivity of our method revealed spectral features not previously observed using traditional tagging methods4. Our approach, in principle, enables analysis of multicomponent mixtures by identifying constituent molecules one at a time. Single molecule sensitivity extends action spectroscopy to rare samples, such as those of extraterrestrial origin5,6, or to reactive reaction intermediates formed at number densities that are too low for traditional action methods.

2.
J Phys Chem A ; 127(18): 4096-4102, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37119198

RESUMO

The structures of gas-phase noncovalently bound clusters have long been studied in supersonic expansions. This method of study, while providing a wealth of information about the nature of noncovalent bonds, precludes observation of the formation of the cluster, as the clusters form just after the orifice of the pulsed valve. Here, we directly observe formation of ethanol-methanol dimers via microwave spectroscopy in a controlled cryogenic environment. Time profiles of the concentration of reagents in the cell yielded gas-phase reaction rate constants of kMe-g = (2.8 ± 1.4) × 10-13 cm3 molecule-1 s-1 and kMe-t = (1.6 ± 0.8) × 10-13 cm3 molecule-1 s-1 for the pseudo-second-order ethanol-methanol dimerization reaction at 8 K. The relaxation cross section between the gauche and trans conformers of ethanol was also measured using the same technique. In addition, thermodynamic relaxation between conformers of ethanol over time allowed for selection of conformer stoichiometry in the ethanol-methanol dimerization reaction, but no change in the ratio of dimer conformers was observed with changing ethanol monomer stoichiometry.

3.
Commun Chem ; 5(1): 31, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36697786

RESUMO

Straightforward identification of chiral molecules in multi-component mixtures of unknown composition is extremely challenging. Current spectrometric and chromatographic methods cannot unambiguously identify components while the state of the art spectroscopic methods are limited by the difficult and time-consuming task of spectral assignment. Here, we introduce a highly sensitive generalized version of microwave three-wave mixing that uses broad-spectrum fields to detect chiral molecules in enantiomeric excess without any prior chemical knowledge of the sample. This method does not require spectral assignment as a necessary step to extract information out of a spectrum. We demonstrate our method by recording three-wave mixing spectra of multi-component samples that provide direct evidence of enantiomeric excess. Our method opens up new capabilities in ultrasensitive phase-coherent spectroscopic detection that can be applied for chiral detection in real-life mixtures, raw products of chemical reactions and difficult to assign novel exotic species.

4.
J Chem Phys ; 150(20): 204122, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31153211

RESUMO

We present a new algorithm, Robust Automated Assignment of Rigid Rotors (RAARR), for assigning rotational spectra of asymmetric tops. The RAARR algorithm can automatically assign experimental spectra under a broad range of conditions, including spectra comprised of multiple mixture components, in ≲100 s. The RAARR algorithm exploits constraints placed by the conservation of energy to find sets of connected lines in an unassigned spectrum. The highly constrained structure of these sets eliminates all but a handful of plausible assignments for a given set, greatly reducing the number of potential assignments that must be evaluated. We successfully apply our algorithm to automatically assign 15 experimental spectra, including 5 previously unassigned species, without prior estimation of molecular rotational constants. In 9 of the 15 cases, the RAARR algorithm successfully assigns two or more mixture components.

5.
Rev Sci Instrum ; 90(5): 053104, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31153235

RESUMO

We describe an instrument which can be used to analyze complex chemical mixtures at high resolution and high sensitivity. Molecules are collisionally cooled with helium gas at cryogenic temperatures (∼4-7 K) and subsequently detected using chirped pulse microwave spectroscopy. Here, we demonstrate three significant improvements to the apparatus relative to an earlier version: (1) extension of its operating range by more than a factor of two, from 12-18 GHz to 12-26 GHz, which allows a much wider range of species to be characterized; (2) improved detection sensitivity owing to the use of cryogenically cooled low-noise amplifiers and protection switches; and (3) a versatile method of sample input that enables analysis of solids, liquids, gases, and solutions, without the need for chemical separation (as demonstrated with a 12-16 GHz spectrum of lemon oil). This instrument can record broadband microwave spectra at comparable sensitivity to high Q cavity spectrometers which use pulsed supersonic jets, but up to 3000 times faster with a modest increase in the sample consumption rate.

6.
J Phys Chem A ; 123(14): 3194-3198, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30883121

RESUMO

Many achiral molecules can be made chiral by appropriate positioning of an isotope. Accurate detection of this type of chirality has remained elusive, and there is as yet no general method for detection of isotopically chiral species. Here, we present the first application of microwave three-wave mixing to isotopically chiral molecules, detecting enantiomeric excess in ( R/ S)-benzyl-α-D1 alcohol. Our method is expected to be applicable to a broad range of isotopically chiral molecules with a prochiral parent species.

7.
J Phys Chem Lett ; 10(8): 1981-1985, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-30897904

RESUMO

Isoprene (2-methyl-1,3-butadiene) is highly abundant in the atmosphere, second only to methane in hydrocarbon emissions. In contrast to the most stable trans rotamer, structural characterization of gauche-isoprene has proven challenging: it is weakly polar, present at the level of only a few percent at room temperature, and structurally complex due to both torsional and methyl tunneling motions. gauche-Isoprene has been observed by two distinct but complementary experimental approaches: chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy coupled with cryogenic buffer gas cooling, and cavity-enhanced FTMW spectroscopy with a pulsed discharge source. Thermal enhancement of the gauche population (from 1.7% to 10.3%) was observed in the cryogenic buffer gas cell when the sample was preheated from 300 to 450 K, demonstrating that high-energy rotamers can be efficiently isolated under our experimental conditions. Rotational parameters for the inversion states (0+/0-) have been determined for the first time, aided by calculations at increasing levels of theoretical sophistication. From this combined analysis, the inversion splitting Δ E and the Fbc Coriolis coupling constant between the two inversion states have been derived.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...